Iron Supplementation For Athletes

Heather Hynes, MSc, RD

Adapted presentation from: Nicole Springle, MAN, RD, Sport dietitian, Nutrition Lead-CSI Ontario

Outline

- Iron overview
- Assessment
- Indications for Supplementation
 - Cut off values??
- Iron Supplements Protocols
- Recommendations and Best Practices
Iron: Physiological Function

- Iron is an essential element with many important roles in the body:
 - Transporting oxygen in the blood and in the muscles
 - Involved in the electron transport system
 - Required for red blood cell production
 - Required for a healthy immune system

- Functional component of hemoglobin and myoglobin

- **Inadequate iron can impair aerobic metabolism and hinder training adaptations**

- Adequate iron stores are a necessity for haematological adaptation to hypoxia (Berglund 1992)

 Suedekum and Dimeff 2005

Iron Pathway: Absorption to Storage

A quick review...

- Iron is absorbed in the intestine (duodenum) - then bound to transferrin (maintains iron as soluble and non-toxic) and carried through the blood stream

- Released into cells via 2 specific cell surface receptors
 - Transferrin receptor 1 (RBC, hepatocytes, monocytes)
 - Transferrin receptor 2 (liver)

- Once inside cell iron is incorporated into iron-containing proteins with excess intracellular iron converted to ferritin
Iron Deficiency and the Athlete

- Anemia is most commonly due to iron deficiency

Risk factors for athletes include:

- Poor nutritional intake/dietary choices
- Hemolysis caused by repeated foot strikes
- Blood & iron losses through menstruation
- Urinary tract losses (hematuria)
- GI bleeds via increased usage of NSAIDS
- Fe losses via sweating
- Helicobactor Pylori (H. Pylori) - infection cause of iron deficiency
- "sport anemia"
- Altered intestinal absorption - inflammation from training

Poor Nutritional Intake:

- Many factors at play….
 - Overall poor intake of heme iron sources (take a look at food sources and portions needed)
 - Increased consumption of dietary factors that inhibit iron absorption (phosphates, phytates, calcium, tannins, vit/min supplements with high calcium load)
 - Links with decreased Fe absorption with high dairy intake
 - Supplements that contain calcium inhibit absorption of Fe by 40% and all other divalent metals are in competition (Zn, Cu, Mg)
 - Low intake of dietary sources that enhance absorption (vitamin C, meat products, copper sources)

(Makrides et al., 2003 & Malczewska et al., 2000)
Iron Deficiency and the Athlete

- Mechanism is typically related to mismatch where there are enhanced losses and inadequate dietary intake leading to reduction in iron stores.
- Increased physical activity may increase the demand for iron (Malczewska et al., 2000).
- Increased need during periods of growth.
- Increased workload (especially in initial training phases) = increased muscle mass and increased blood volume = increased demand for oxygen.
- Physical exercise may impair iron absorption and increase iron losses.

Inflammation

- Roecker et al. (2005) discovered a new iron-regulatory hormone called hepcidin that may have an impact on iron metabolism at the conclusion of exercise.
- Hepcidin has been shown to degrade iron channels responsible for absorption of iron from the gut.
- Increased hepcidin = reduction in serum iron (it puts the body in iron lockdown - Jeannie Callum, BA, MD, 2015 presentation at CSI Ontario).
- Infection and inflammation cause upregulation of hepcidin via IL-6 leading to decreased absorption and eventually anemia.
- Research has found that hepcidin response is less pronounced in females with ferritin levels <35ug/L (Peeling et al. 2006).
Inflammation

- IL-6 mediated hepcidin up-regulation may affect the absorption of iron from post-exercise feedings

- Endurance exercise has been shown to evoke an acute phase response that increases IL-6 and urinary hepcidin (Newlin et al. 2012, Peeling et al. 2009)

- Longer exercise durations result in greater increases in hepcidin (Newlin et al. 2012, Roecker et al. 2005)

- Thus, exercise-induced, inflammatory up-regulation of hepcidin activity might potentially be a new mechanism for iron deficiency in athletes

- Note: appears to be responders and non-responders to hepcidin

 - Maintenance of an elevated concentration of IL-6 may contribute to the higher hepcidin concentrations in the responders group (Newlin et al. 2012)
Screening

- IOC Consensus Statement on Periodic Health Evaluation of Elite Athletes recommends routine hematological screening during the Periodic Health Evaluation (PHE) for anemia and decreased iron stores (IOC 2009)

- ACSM – no specific recommendations on iron deficiency and anemia screening in Pre-Participation Physical Exam (PPE) form

- CASEM – no position statement on iron deficiency and anemia screening in athletes (only statement to ensure ‘appropriate’ serum ferritin prior to altitude camps/competitions)

Are you screening your athletes?

Iron Status

- Most common assessment for iron status - measuring serum ferritin

- Currently available testing:
 - Complete blood count
 - Serum ferritin level
 - Serum iron level
 - Serum transferrin level
 - Total iron binding capacity
 - Percent transferrin saturation
 - Soluble transferrin receptor concentration
Interpretation of Serum Ferritin

<table>
<thead>
<tr>
<th>Serum Ferritin (ug/L)</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td><15 (<12 kids)</td>
<td>Diagnostic of iron deficiency</td>
</tr>
<tr>
<td>15-50</td>
<td>Depletion of stored iron, probable iron deficiency</td>
</tr>
<tr>
<td>51-100*</td>
<td>Reduced iron stores, possible iron deficiency</td>
</tr>
<tr>
<td>101-300</td>
<td>Iron deficiency unlikely (in the absence of inflammation)</td>
</tr>
<tr>
<td>>300</td>
<td>May reflect inflammation or iron overload</td>
</tr>
<tr>
<td>>800</td>
<td>Probable iron overload (in the absence of inflammation)</td>
</tr>
</tbody>
</table>

Inflammation is common and in its presence ferritin may be elevated and give seemingly normal results, even in the presence of iron deficiency. Therefore, a serum ferritin result within the normal range for the patient’s age but less than 100 ug/L, does not exclude depleted or reduced iron stores.

BC Medical Association, 2015

Interpretation of Serum Ferritin

- Ferritin is an Acute-phase reactant...nonspecifically elevated in a wide variety of inflammatory states including infection, malignancy, and autoimmune diseases
- Increased immediately after exercise
- Increase mainly due to hemoconcentration, cell destruction and inflammatory-like reactions post-exercise
- Type and duration of exercise is not related to extent of ferritin increase

Suedekum and Dimeff 2005
Indications for Supplementation

Iron Deficiency Classification

- In research studies on iron deficiency in athletes, the cutoff has varied from Serum Ferritin (SF) < 12-40 ug/L.
- IOC consensus statement (2012) for altitude training/competition: SF >30 ug/L for females and >40 ug/L for males.
- Peeling et al. (2007) suggested that iron deficiency can be classified into 3 stages of severity:
 - Stage 1 – Iron depletion
 - SF < 35 ug/L, Hemoglobin (Hb) > 115 g/L, transferrin saturation (Sat) > 16%
 - Stage 2 – Iron deficient erythropoiesis
 - SF < 20 ug/L, Hb > 115 g/L, Sat < 16%
 - Stage 3 – Iron deficient anemia (IDA)
 - SF < 12 ug/L, Hb < 115 g/L, Sat < 16%
Iron Deficiency without anemia (IDNA)

- IDNA affects approximately 30% of active females
- IDNA is 5–7 times more prevalent than iron deficiency with anemia
- Individuals with IDNA (SF< 20.0 ug/L, Hb > 120 g/L) are expected to have adequate O2-carrying Hb but impaired O2 utilization

DellaValle and Haas 2011

IDNA and Athletic Performance

- Untrained women
 - IDNA has been shown to compromise aerobic performance and hinder adaptations to training (Brownlie, Utermohlen, Hinton, Giordano, & Haas, 2002; Jensen et al., 1992)
 - IDNA impaired 15-km cycling time-trial performance in nonathletic women (Hinton et al., 2000; Zhu & Haas, 1998)

- But what about in athletes...
IDNA and Athletic Performance

- Freidmann et al (2001):
 - Double-blind, placebo-controlled trial
 - Investigated the effect of iron supplementation (100 mg, bid) in 40 young elite athletes with iron depletion (serum ferritin < 20 ug/L) and normal hemoglobin
 - Serum ferritin levels increased to normal with no other significant changes to hematologic variables (i.e. Mean corpuscular volume (MCV) unchanged)
 - Iron supplementation group demonstrated significant changes in VO$_2$ max and in oxygen consumption in a maximal accumulated oxygen test

IDNA and Athletic Performance

- Dellavalle and Haas 2011
 - 165 collegiate level female rowers
 - Objective was to investigate the impact of iron depletion without anemia (IDNA) on performance indicators
 - Research group used a cut off of 20ug/L for serum ferritin
 - 27% ($n = 44$) IDNA (serum ferritin < 20.0 ug/L)
 - 10% ($n = 16$) IDA (hemoglobin <120 g/L)
 - IDNA female iron-depleted rowers reported 2-km times that were approximately 21 s slower ($P < 0.004$) compared to rowers with normal iron status
 - 30% reported regular or intermittent use of a multivitamin/multimineral supplement
 - Study recommendation- screening of all athletes at the start of the season
Athlete Screening:

Landahl et al., 2005

- IDA and IDNA within elite female soccer, N= 28 Swedish national team athletes
 - Objective was to determine the prevalence of IDA and IDNA on the team (timeline was 6 months out from FIFA world cup soccer)
 - 57% had IDNA and 27% had IDA
 - Cut off values used:
 - <120g/L Hemoglobin = absolute anemia
 - <16 ug/L serum ferritin = certain iron deficiency
 - Supplementation given: players with iron deficiency were given 37mg iron/tablets 2 x per day - follow up in 3 months
 - Athletes with IDA on Fe supplementation saw an increase from 114g/L to 133g/L for hemoglobin concentration (in 3 months)

IRON SUPPLEMENTS
Iron in the Diet

- Primary source is dietary - 2 types
 - Heme iron = myoglobin in flesh foods (meat)
 - Nonheme iron = vegetables and grains

- Healthy adults absorb about 10-15% of dietary iron but individual absorption is influenced by several factors, including the chemical form of iron (heme or nonheme), and the body’s storage levels of iron.

- Absorption is improved by meat proteins and ascorbic acid (vitamin C)

- Tannins (tea), calcium, polyphenols and phytates (legumes/grains) can decrease absorption of nonheme iron

Iron Supplements: Type/dosage

- Typically ferrous iron salts
 - Ferrous fumarate (Palafer®) 300 mg = 100 mg Fe
 - Ferrous sulfate (generic) 300 mg = 60 mg Fe
 - Ferrous gluconate (generic) 300 mg = 35 mg Fe

- New formulations with fewer reported side effects ($$$)
 - Heme-iron polypeptide (Proterrin®) = 11 mg Fe
 - Polysaccharide-iron complex (Feramax® 150™) = 150 mg elemental iron

What type are you using?
Iron Supplements: Type

- Ferrous salts (in particular prolonged release FS preparations) remain the treatment of choice given their high effectiveness, acceptable tolerability, and low cost (Santiago 2012)

- IM injections vs oral supplementation – greater improvement in ferritin and faster rate of rise (Dawson 2006)

- Implications when improvements needed for imminent competition

Iron Supplements: Dose

- Increased likelihood of GI side effects above 45 mg/d of elemental iron supplementation

- Guidelines for treatment of IDA: (Stotzfus and Deryfuss 1998)
 - 60 to 120mg of elemental iron of ferrous sulphate
 - 3 months in adolescents and adults, including pregnant women

What dose are you using?
Iron Supplements: Dose

- Guidelines by Nielsen and Nachtigall (1998) for iron supplementation in athletes:
 - Use of a pharmaceutical iron preparation with known high bioavailability
 - Dosage of ferrous (Fe++) iron 100 mg/day
 - Taken on an empty stomach/no other food/with no other divalent metals
 - Include vitamin C
 - Follow up 2-3 months

- Sufficient arguments to support controlled iron supplementation in all athletes with low serum ferritin levels (cut off values ???)
 - Prevent iron deficiency & nonspecific upregulation of intestinal metal ion absorption

Iron Supplements: Concerns

- Numerous studies have shown that there is no objective improvement in performance in a nondeficient state

- Indiscriminant iron supplementation carries risk of iron overload or inducing hemochromatosis

- Gastrointestinal effects (constipation, cramping)

- Can theoretically interfere with absorption of other minerals, such as zinc and copper

- Care not taken to improve diet when primary intervention is supplementation (Springle 2013 @)

Any other concerns with supplementation vs dietary intervention?

Suedekum and Dimoff 2005
Recommendations and Best Practices

National Sport Science and Medicine Committee (NSSMAC):

- March 2014 working group Guidelines:
 - Blood work target = SF >35ug/L
 - Initial screening- annually
 - Monitoring every 6-12 weeks if SF is < 35ug/L (otherwise annual monitoring)
 - Recommended modified training program until SF values >35ug/L
 - Supplementation: minimum of 100mg elemental Fe/day
 - Form: as iron salts (ferrous, ferrous fumarate, ferrous sulfate) or alternative supplements (heme iron, iron polysaccharides)
 - In the absence of blood work- do not supplement
 - Altitude- special protocol required
Screening

- At present, screening of athletes for iron deficiency and anemia is not routinely recommended by any major sport organizations except the IOC.

- May be warranted with:
 - Elite-level female and male athletes
 - Team sports and endurance athletes (athletes dependant on aerobic capacity)
 - Athletes with performance declines
 - Vegetarians or athletes with restrictive diets
 - Competitors with a previous history of iron deficiency
 - Athletes training at altitude

Conclusions

- Iron is critical to athletic performance

- Athletes may be iron deficient due to mechanisms of loss due to training and possibly inflammation

- Iron deficiency without anemia in athletes remains a questionable indication for therapeutic iron supplementation, but evidence is growing to support this practice

- Athletes should primarily be encouraged to ensure adequate dietary intake of iron to prevent inadequate iron stores
References

References

